Wednesday, 24 April 2013

find the determinant of a 2x2 matrix ,matrix multiplication 2x2, Evaluate the determinants in Exercises 1 and 2

find the determinant of a 2x2 matrix ,matrix multiplication 2x2
Evaluate the determinants in Exercises 1 and 2.
Answer
Use formula

    = 2(−1) − 4(−5) = − 2 + 20 = 18
Question 2:
Evaluate the determinants in Exercises 1 and 2.

Answer
Use formula
 = (cos θ)(cos θ) − (−sin θ)(sin θ) = cos2 θ+ sin2 θ = 1
(ii)
Use formula
= (x2 − x + 1)(x + 1) − (x − 1)(x + 1)
= x3 − x2 + x + x2 − x + 1 − (x2 − 1)
= x3 + 1 − x2 + 1
= x3 − x2 + 2

3. If
, then show that | 2A | = 4 | A |
LHS
                        =2(4) – 4(8)
   = 8 – 32
   =  - 24 
R.H.S
                         = 4(2 – 8)
                         = 4(-6)
                         = - 24
L.H.S = R.H.S
Hence proved

4. If
 , then show that | 3 A | = 27 | A |
LHS
Use formula
=>|3A| =  3(36 - 0) – 0(0 -0) + 3(0-0)
            = 108
R.H.S
  
= 27 x 4
= 108

LHS = RHS
Hence proved

No comments:

Post a Comment