By using properties of determinants, in
Exercises 8 to 14, show that:
=> (b-a)(c-a)(c2 –b2 + ac
–ab +a2 –a2)
=> (b-a)(c-a){(c –b)(c+b) + a(c –b)}
=> (b-a)(c-a){(c –b)(c+b) + a(c –b)}
=>(b-a)(c-a)(c-b)(a+b+c)
=> (a-b)(b-c)(c-a)(a+b+c)
Hence proved
thank you
ReplyDelete