Monday, 6 May 2013

Polynomials facorization of polynomials

Polynomials and factorization of polynomials

Polynomials Mathematics chapter 2
What is a Polynomial?
Type of Polynomials
Zero of a polynomials
Remainder Theorem
Factor Theorem
list of all formula of factorization
Exercise 2.1
 1Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
(i) 4x2 – 3x + 7 (ii) y2 + √2  (iii) 3√t + t√ 2 (iv) y +2/y  (v) x10 + y3 + t50
 2Write the coefficients of x2 in each of the following:
(i) 2 + x2 + x (ii) 2 – x2 + x3 (iii) (π /2)x2+ x (iv) √2x – 1
 3Give one example each of a binomial of degree 35, and of a monomial of degree 100. 
 4Write the degree of each of the following polynomials:
(i) 5x3 + 4x2 + 7x (ii) 4 – y2 (iii) 5t – √7 (iv) 3 
 5Classify the following as linear, quadratic and cubic polynomials:
(i) x2 + x (ii) x – x3 (iii) y + y2 + 4 (iv) 1 + x (v) 3t (vi) r2  
Exercise 2.2
1Find the value of the polynomial 5x – 4x2 + 3 at
(i) x = 0 (ii) x = –1   (iii) x = 2 
2Find p(0), p(1) and p(2) for each of the following polynomials:
(i) p(y) = y2 – y + 1   (ii) p(t) = 2 + t + 2t2 – t3  (iii) p(x) = x3   (iv) p(x) = (x – 1) (x + 1) 
3Verify whether the following are zeroes of the polynomial, indicated against them.
(i) p(x) = 3x + 1, x = - 1/3
(ii) p(x) = 5x – π, x = 4/5
(iii) p(x) = x2 – 1, x = 1, –1
(iv) p(x) = (x + 1) (x – 2), x = – 1, 2
(v) p(x) = x2, x = 0
(vi) p(x) = lx + m, x = –m/l
(vii) p(x) = 3x2 – 1, x = - 1/√3 , 2/√3
(viii) p(x) = 2x + 1, x =1/2 
4Find the zero of the polynomial in each of the following cases:
(i) p(x) = x + 5   (ii) p(x) = x – 5   (iii) p(x) = 2x + 5 (iv) p(x) = 3x – 2
(v) p(x) = 3x   (vi) p(x) = ax, a ≠ 0  (vii) p(x) = cx + d, c ≠ 0, c, d are real numbers
Exercise 3.2
1Find the remainder when x3+3x2 + 3x + 1 is divided by
(i) x + 1    (ii) x –1/2   (iii) x   (iv) x + π  (v) 5 + 2x  
2Find the remainder when x3 – ax2 + 6x – a is divided by x – a. 
3Check whether 7 + 3x is a factor of 3x3 + 7x 
Exercise 3.4
1Determine which of the following polynomials has (+ 1) a factor :
(i) x3 + x3 + + 1
(ii) x4 + x3 + x3 + + 1
(iii) x4 + 3x3 + 3x3 + + 1
(iv) x3 – x3 – (2+√2)x + √
2Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the
following cases:
(i) p(x) = 2x3 + x2 – 2– 1, g(x) = + 1
(ii) p(x) = x3 + 3x2 + 3+ 1, g(x) = + 2
(iii) p(x) = 
3Find the value of k, if – 1 is a factor of p(x) in each of the following cases:(use remainder theorem)
(i) p(x) = x2 + 
(ii) p(x) = 2x2 + kx + √2
(iii) p(x) = kx2 – 2+ 1
(iv) p(x) = kx2 – 3k 
4Factorise :(quadratic equations factoring or polynomial factoring )
(i) 12x2 – 7+ 1
(ii) 2x2 + 7+ 3
(iii) 6x2 + 5– 6
(iv) 3x2 – – 4 
5Factorise (factoring trinomails or polynomial factoring ) :
(i) x3 - 2x2 - x + 2
(ii) x3 - 3x2 - 9x - 5
(iii) x3 + 13x2 + 32x + 20
(iv) 2y3 + y2 - 2y - 1 
Additional question for factoring trinomails degrees of polynomials practice factoring polynomials polynomial factoring dividing polynomials solving polynomial equations quadratic equations polynomials comming soon ...

2 comments: