Sunday, 14 April 2013

Determine whether each of the following relations are reflexive, symmetric and transitive


Question 1: Determine whether each of the following relations are reflexive, symmetric and transitive:
(i)Relation R in the set A = {1, 2, 3…13, 14} defined as
R = {(x, y): 3x  y = 0}
(ii) Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and x < 4}
(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as
R = {(x, y): y is divisible by x}
(iv) Relation R in the set Z of all integers defined as
R = {(x, y): x  y is as integer}
(v) Relation R in the set A of human beings in a town at a particular time given by
(a) R = {(x, y): x and y work at the same place}
(b) R = {(x, y): x and y live in the same locality}
(c) R = {(x, y): x is exactly 7 cm taller than y}
(d) R = {(x, y): x is wife of y}
(e) R = {(x, y): x is father of y}
Answer: (i) A = {1, 2, 3 … 13, 14}
R = {(x, y): 3x  y = 0}
Writing relation R in roster form we get
R = {(1, 3), (2, 6), (3, 9), (4, 12)}
R is not reflexive since (1, 1), (2, 2) … (14, 14) R.
Also, R is not symmetric as (1, 3) R, but (3, 1) R. [3(3) − 1 ≠ 0]
Also, R is not transitive as (1, 3), (3, 9) R, but (1, 9) R.
[3(1) − 9 ≠ 0]
Therefore, R is neither reflexive, nor symmetric, nor transitive.
(ii) R = {(x, y): y = x + 5 and x < 4}
Writing relation R in roster form we get
R= {(1, 6), (2, 7), (3, 8)}
Here (1, 1) R.
R is not reflexive.
(1, 6) R But (6, 1) R.
R is not symmetric.
Now, since there is no pair in R such that (x, y) and (y, z) R, then (x, z) cannot belong to R.
R is not transitive.
Therefore, R is neither reflexive, nor symmetric, nor transitive.
(iii) A = {1, 2, 3, 4, 5, 6}
R = {(x, y): y is divisible by x}
We know that any number (a) is divisible by itself. So (a, a) R
R is reflexive.
Now, (3, 6) R [as 6 is divisible by 3]
But, (6, 3) R. [as 3 is not divisible by 6]
R is not symmetric.
Let (x, y), (y, z) R. Then, y is divisible by x and z is divisible by y.
z is divisible by x (x, z) R
R is transitive.
Therefore, R is reflexive and transitive but not symmetric.
(iv) R = {(x, y): x  y is an integer}
Now, for every x  Z, (x, x) R as x  x = 0 is an integer.
R is reflexive.
Now, for every x, y  Z if (x, y) R, then x  y is an integer.
−(x  y) is also an integer (y  x) is an integer.
(y, x) R
R is symmetric.
Now, Let (x, y) and (y, z) R, where x, y, z  Z.
(x  y) and (y  z) are integers.
 x  z = (x  y) + (y  z) is an integer.
(x, z) R
R is transitive.
Therefore, R is reflexive, symmetric, and transitive.
(v) (a) R = {(x, y): x and y work at the same place}
 (x, x) R
R is reflexive.
If (x, y) R, then x and y work at the same place.
 y and x work at the same place.
(y, x) R.
R is symmetric.
Now, let (x, y), (y, z) R
 x and y work at the same place and y and z work at the same place.
 x and z work at the same place.
(x, z) R
R is transitive.
Therefore, R is reflexive, symmetric, and transitive.
(b) R = {(x, y): x and y live in the same locality}
Clearly (x, x) R as x and x is the same human being.
R is reflexive.
If (x, y) R, then x and y live in the same locality.
 y and x live in the same locality.
(y, x) R
R is symmetric.
Now, let (x, y) R and (y, z) R.
 x and y live in the same locality and y and z live in the same locality.
 x and z live in the same locality.
(x, z) R
R is transitive.
Therefore, R is reflexive, symmetric, and transitive.
(c) R = {(x, y): x is exactly 7 cm taller than y}
Now, (x, x) R
Since human being x cannot be taller than himself.
R is not reflexive.
Now, let (x, y) R.
 x is exactly 7 cm taller than y.
Then, y is not taller than x.
(y, x) R
Indeed if x is exactly 7 cm taller than y, then y is exactly 7 cm shorter than x.
R is not symmetric.
Now, Let ( x, y), (y, z) R.
 x is exactly 7 cm taller than y and y is exactly 7 cm taller than z.
 x is exactly 14 cm taller than z .
(x, z) R
R is not transitive.
Therefore, R is neither reflexive, nor symmetric, nor transitive.
(d) R = {(x, y): x is the wife of y}
Now, ( x, x) R
Since x cannot be the wife of herself.
R is not reflexive.
Now, let (x, y) R
 x is the wife of y.
Clearly y is not the wife of x.
(y, x) R
Indeed if x is the wife of y, then y is the husband of x.
R is not transitive.
Let (x, y), (y, z) R
 x is the wife of y and y is the wife of z.
This case is not possible. Also, this does not imply that x is the wife of z.
(x, z) R
R is not transitive.
Therefore, R is neither reflexive, nor symmetric, nor transitive.
(e) R = {(x, y): x is the father of y}
(a, a) R
Because a cannot be the father of himself.
R is not reflexive.
Now, let (x, y) R.
 x is the father of y.
 y cannot be the father of y.
Indeed, y is the son or the daughter of y.
(y, x) R
R is not symmetric.
Now, let (x, y) R and (y, z) R.
 x is the father of y and y is the father of z.
 x is not the father of z.
Indeed x is the grandfather of z.
(x, z) R
R is not transitive.
Therefore, R is neither reflexive, nor symmetric, nor transitive.

No comments:

Post a Comment